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ORIGIN OF COHERENCE in an ELECTRON BUNCH
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BUNCH SELF-INTERACTION VIA CSR
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INDUCED ENERGY SPREAD AND EMITTANCE GROWTH
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∆E = 0 (ideal case) ∆θ = 0

∆E ≠ 0 ∆θ ≠ 0

Example: Achromatic bend through angle θ; ∆E = energy spread induced in the bend.



SYNCHROTRON RADIATION SPECTRUM
FOR CHARGE IN CIRCULAR MOTION

ωγ d
dI

e
c
2

ω/ωc

t.independen25.3

),regimeCSR(For

;
3

4
2
3

3/12

3
3

−⇒





≈

>≥

=↔=

γω
ω

λσλ
γ

πλγω

c
R

c
e

d
dI

R
R
c

cz

cc

∫
∞

=
c

xKdx
d
dI

e
c

c ω
ωω

ω
ωγ

γ

)(3

:largeFor

352

cm. 20 mm, 1for 

 8 e.g., ,
2
3

:anglein  Spread
3/1

==

≈





≈

R
R

o
c

λ

λ
π

θ



HAMILTONIAN FORMULATION

Single-particle hamiltonian:
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Simple, yet
excruciatingly

complex!



BUNCH SELF-INTERACTION IN VACUUM CHAMBER
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R = 1 m,
E = 40 MeV,
Gaussian bunch
with σz = 1 mm.

TRANSIENT POWER LOSS OF A BUNCH ENTERING
A CIRCLE FROM A STRAIGHT PATH

[R. Li, C.L. Bohn, J.J. Bisognano, Proc. SPIE, Coherent Electron-Beam X-Ray Sources, SPIE Vol. 3154, 223 (1997).]
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CANCELLATION OF LOCAL INTERACTION
[R. Li, Proc. 2002 EPAC (submitted).]

Equation of Transverse Motion:
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Forces across a gaussian bunch.

Forces on one particle vs. path length.



PROCEDURE FOR BUNCH COMPRESSION

DESY TTF, Fermilab Photoinjector

•  Impart correlated energy spread across the bunch
–  accelerate off of the rf crest
–  particles in tail pick up more energy than particles in head

•  Impart energy-dependent path lengths
–  use dipole magnetic fields
–  high-energy tail catches up with low-energy head
–  net effect: rotation of longitudinal phase space (or is it???)



EARLY EXPERIMENTS WITH JEFFERSON LAB’S FEL
[Ph. Piot, et al., Proc. 2000 EPAC, 1546 (2000).]

(Measurements made in March 1999.)

Fine structure at δ2 was enhanced 
at larger bunch charge.

Emittance grew as longitudinal waist was moved
toward the arc #1 entrance.

~0.04 nC bunches at 40 MeV



OBSERVATION OF PHASE-SPACE FRAGMENTATION
[M. Huening, et al., NIM A475, 348 (2001).]

Fragmentation (only) near max. compression:    Tomographically reconstructed phase space:

~1 nC bunches at 135 MeV



50 fs time resolution

Modulations seen to be sensitive to the phase-matching angle of the laser-doubling crystals.
But, there is an open question on the role, if any, of surface-roughness wakefield.

PRONOUNCED MICROBUNCHING
[W.S. Graves, et al., Proc. 2001 PAC, 2224 (2001)]

BNL SDL
~0.25 nC bunches

at 75 MeV



ROLE OF RF CURVATURE
[R. Li, Proc. 2000 EPAC, 1312 (2000)]

After compressing with rf curvature
in the input longitudinal phase space.

Corresponding density profile (a ≡ R56σδun/σz).

Local charge concentration
enhances the CSR force.



THEORY OF CSR-INDUCED MICROBUNCHING
[S. Heifets et al., PRST-AB 5, 064401 (2002); Z. Huang and K.-J. Kim (submitted)]

Underlying theme:
The beam’s longitudinal phase space carries high-frequency “seed” modulations
arising from some source, which are then amplified during bunch compression.

Objective: Calculate gain length of instability, especially in LCLS compressor.

Method: Invoke a linearized Vlasov approach with simplifications:
     -  Dipole length small compared to dipole spacing.
     -  Steady-state CSR wake (transients more relevant at longer wavelength).
     -  No shielding, transverse beam size, collective transverse forces.

For large transverse size and zero compression:
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RESULTS OF THEORY FOR LCLS COMPRESSOR

Beam energy = 4.54 GeV; Bunch charge = 1 nC;
Bunch length starts at 195 µm, ends at 23 µm.

Gain vs. Perturbation Wavelength at 2nd Compressor Entrance

1: σδun = 3·10-5

         ε = 1 µm

2: σδun = 3·10-5

         ε = 0

3: σδun = 3·10-6

         ε = 1 µm



COHERENT FAR-IR BURSTS AT ALS



MICROBUNCHING AND CSR BURSTS IN RINGS



STABLE CSR AT BESSY-II



PERIODIC TO CHAOTIC BURSTING IN
SINGLE-BUNCH MODE (at BESSY II)



Results of Marco Venturini, Bob Warnock SLAC

BURST SIMULATIONS



Bunch length vs. time
exhibits sawtooth behavior
(i.e. relaxation oscillations)

Ratio of coherent/incoherent
power during a burst

BURST SIMULATIONS (cont.)
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SOME PERSONAL IMPRESSIONS…
•  Several “interesting developments” over the past 7 years:

-  Realization that CSR can ruin beam quality, as seen in experiments
-  Development of CSR codes (varied success – initial conditions are crucial!)
-  Improved analytic understanding of near-field cancellations
-  Surprise! – microbunch instability – but how important are other wakefields?

•  Topics for future work:
-  Capitalize on cancellation of local interactions to develop

--  fast, comprehensive code including effective radial force
--  more comprehensive Vlasov treatment of microbunch instability

-  Develop “cure” of microbunch instability
--  compatible designs of bunch compressors
--  transform to flat beam and compress?

-  Or, “make lemonade” (e.g., the Shintake brew from 2002 CSR Workshop)
--  seed electron beam with a periodic modulation,
--  use microbunch instability to amplify modulation,
--  pass amplified modulations through a FEL system.

- Or, build a ring-based CSR source? – Let’s see!


